

ADVANCED GCE MATHEMATICS (MEI) Statistics 2

4767

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- Graph paper
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:

Scientific or graphical calculator

Friday 18 June 2010 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- This document consists of **4** pages. Any blank pages are indicated.

1 Two celebrities judge a talent contest. Each celebrity gives a score out of 20 to each of a random sample of 8 contestants. The scores, *x* and *y*, given by the celebrities to each contestant are shown below.

Contestant	А	В	С	D	Е	F	G	Н
x	6	17	9	20	13	15	11	14
У	6	13	10	11	9	7	12	15

- (i) Calculate the value of Spearman's rank correlation coefficient. [5]
- (ii) Carry out a hypothesis test at the 5% significance level to determine whether there is positive association between the scores allocated by the two celebrities. [6]
- (iii) State the distributional assumption required for a test based on the product moment correlation coefficient. Sketch a scatter diagram of the scores above, and discuss whether it appears that the assumption is likely to be valid. [5]
- 2 A radioactive source is decaying at a mean rate of 3.4 counts per 5 seconds.
 - (i) State conditions for a Poisson distribution to be a suitable model for the rate of decay of the source. [2]

You may assume that a Poisson distribution with a mean rate of 3.4 counts per 5 seconds is a suitable model.

(ii)) State the variance of this Poisson distribution.	[1]
---------------	--	-----

- (iii) Find the probability of
 - (A) exactly 3 counts in a 5-second period,
 - (B) at least 3 counts in a 5-second period. [5]
- (iv) Find the probability of exactly 40 counts in a period of 60 seconds. [3]
- (v) Use a suitable approximating distribution to find the probability of at least 40 counts in a period of 60 seconds.
- (vi) The background radiation rate also, independently, follows a Poisson distribution and produces a mean count of 1.4 per 5 seconds. Find the probability that the radiation source together with the background radiation give a total count of at least 8 in a 5-second period. [3]

- 3 In a men's cycling time trial, the times are modelled by the random variable *X* minutes which is Normally distributed with mean 63 and standard deviation 5.2.
 - (i) Find
 - (A) P(X < 65), (B) P(60 < X < 65).
 [6]
 - (ii) Find the probability that 5 riders selected at random all record times between 60 and 65 minutes. [2]
 - (iii) A competitor aims to be in the fastest 5% of entrants (i.e. those with the lowest times). Find the maximum time that he can take. [3]

It is suggested that holding the time trial on a new course may result in lower times. To investigate this, a random sample of 15 competitors is selected. These 15 competitors do the time trial on the new course. The mean time taken by these riders is 61.7 minutes. You may assume that times are Normally distributed and the standard deviation is still 5.2 minutes. A hypothesis test is carried out to investigate whether times on the new course are lower.

(iv) Write down suitable null and alternative hypotheses for the test. Carry out the test at the 5% significance level.

		Cat	Row			
		Junior	Senior	Veteran	totals	
	Track	9	8	2	19	
Type of running	Road	4	8	12	24	
8	Both	4	10	6	20	
Column	totals	17	26	20	63	

4 In a survey a random sample of 63 runners is selected. The category of runner and the type of running are classified as follows.

(i) Carry out a test at the 5% significance level to examine whether there is any association between category of runner and the type of running. State carefully your null and alternative hypotheses. Your working should include a table showing the contributions of each cell to the test statistic.

[12]

(ii) For each category of runner, comment briefly on how the type of running compares with what would be expected if there were no association. [6]

Mathematics (MEI)

Advanced GCE 4767

Statistics 2

Mark Scheme for June 2010

Question 1

•											
(i)	$\frac{x}{y}$ Rank x Rank y d d d^2 $\Sigma d^2 = 48$ $r_s = 1$ -					13 9 5 6 -1 1	15 7 3 7 -4 16	11 12 6 3 3 9	14 15 4 1 3 9	M1 for attempt at ranking (allow all ranks reversed) M1 for d^2 A1 CAO for Σd^2 M1 for method for r_s A1 f.t. for $ r_s < 1$	
	= 0	.429 ((to 3 s	.f.) [allow	0.43	to 2 s.	f.]		NB No ranking scores zero	5
(ii)	H_0 : no association between <i>X</i> and <i>Y</i> in the population H_1 : some positive association between <i>X</i> and <i>Y</i> in the population									B1 for H_0 B1 for H_1 B1 for population SOI NB $H_0 H_1 not$ ito ρ	3
	One tail test critical value at 5% level is 0.6429 Since 0.429 < 0.6429, there is insufficient evidence to reject H ₀ , i.e. conclude that there is not enough evidence to show positive association between the two judges' scores.							B1 for ± 0.6429 M1 for sensible comparison with c.v., provided that $ r_s < 1$ A1 for conclusion in context f.t. their r_s and sensible cv	3		
(iii)	A bivariate Normal distribution is required. Scatter diagram. Suitable discussion								B1 G1 labelled axes G1 correct points E1 E1 TOTAL	<u>5</u> 16	

Question 2

	Suon 2 Counta have a uniform average rate of accurrence	E1	•
(i)	Counts have a uniform average rate of occurrence	E1	2
	All counts are independent	E1	
(ii)	Variance = 3.4	B1	1
(iii)	(A) Either $P(X=3) = 0.5584 - 0.3397 = 0.2187$ Or $P(X=3) = e^{-3.4} \frac{3.4^3}{3!} = 0.2186$ (B) Using tables: $P(X \ge 3) = 1 - P(X \le 2)$	M1 for use of tables or calculation A1 M1 for 1 - $P(X \le 2)$	2
	= 1 - 0.3397 = 0.6603	M1 correct use of Poisson tables A1	3
(iv)	$\lambda = 12 \times 3.4 = 40.8$ P(X=40) = e ^{-40.8} $\frac{40.8^{40}}{40!}$ = 0.0625	B1 for mean M1 for calculation A1	3
(v) (vi)	Mean no. per hour = $12 \times 3.4 = 40.8$ Using Normal approx. to the Poisson, $X \sim N(40.8, 40.8)$ $P(X \ge 40) = P\left(Z > \frac{39.5 - 40.8}{\sqrt{40.8}}\right)$ $= P(Z > -0.2035) = \Phi(0.2035)$ = 0.5806 Overall mean = 4.8 $P(X \ge 8) = 1 - P(X \le 7)$	 B1 for Normal approx. B1 for correct parameters (SOI) B1 for correct continuity corr. M1 for probability using correct tail A1 CAO (3 s.f.) B1 for 4.8 M1 	5
(V1)	= 1 - 0.8867 = 0.1133	A1	3
		TOTAL	19

Question 3

Que	estion 3		
(i)	$ \begin{array}{c} (A) \ P(X < 65) = \\ p(z - 65 - 63) \end{array} $	M1 for standardizing	
	$P\left(Z < \frac{65 - 63}{5.2}\right)$ = P(Z < 0.3846) = $\Phi(0.3846) = 0.6497$ (B) P(60 < X < 65) = P\left(\frac{60 - 63}{5.2} < Z < \frac{65 - 63}{5.2}\right) = P(-0.5769 < Z < 0.3846)	M1 for structure A1 CAO (min 3 s.f.), NB When a candidate's answers suggest that (s)he appears to have neglected to use the difference column of the Normal distribution tables penalise the first occurrence only M1 for standardizing both	3
	$= \Phi(0.3846) - (1 - \Phi(0.5769))$ = 0.6497 - (1 - 0.7181) = 0.3678	M1 for correct structure	
		A1 CAO 3s.f.	3
(ii)	P(All 5 between 60 and 65) = $0.3678^5 = 0.00673$	M1 A1 FT (min 2sf)	
			2
(iii)	From tables $\Phi^{-1}(0.95) = 1.645$ $\frac{k-63}{5.2} = -1.645$	B1 for ± 1.645 seen M1 for correct equation in k	
	$x = 63 - 5.2 \times 1.645 = 54.45$ mins	A1 CAO	3
(iv)	H ₀ : $\mu = 63$ minutes; H ₁ : $\mu < 63$ minutes. Where μ denotes the population mean time on the new course.	B1 for use of 63 B1 for both correct B1 for definition of μ	3
	Test statistic = $\frac{61.7 - 63}{5.2 / \sqrt{15}} = \frac{-1.3}{1.3426}$ = -0.968	M1 must include √15 A1	
	5% level 1 tailed critical value of $z = 1.645$ -0.968 > -1.645 so not significant. There is not sufficient evidence to reject H ₀	B1 for ±1.645 M1 for sensible comparison leading to a conclusion	
	There is insufficient evidence to conclude that the new course results in lower times.	A1 FT for correct conclusion in words in context	E
			5 19
			13

4767

Question 4	
-------------------	--

	H ₀ : no association running;	n between cat	egory of runne	r and type of	B1	1
	H_1 : some associa of running;	tion between				
			M1 A2 for expected			
	EXPECTED	Junior	Senior	Veteran	values (to 2 dp)	
	Track	5.13	7.84	6.03	(allow A1 for at least	
	Road	6.48	9.90	7.62	one row or column	
	Both	5.40	8.25	6.35	correct)	
		Junior	Senior	Veteran		
	CONTRIBUTN Track	2.9257	0.0032	2.6949	M1 for valid attempt at	
	Road	0.9468	0.3663	2.5190	$(O-E)^2/E$	
	Both	0.3615	0.3694	0.0192	A1 for all correct	
	Doui	0.3013	0.3094	0.0192	NB These M1A1 marks cannot be implied by a correct final value of X^2	
	$X^2 = 10.21$			M1 for summation A1 for X^2	7	
-	Refer to X_4^2		B1 for 4 deg of f			
(Critical value at	5% level = 9		B1 CAO for cv		
	Result is signific	cant		B1 FT their 'sensible' X^2		
1	There is evide association betv running. NB if $H_0 H_1$ reverse first B1or final E1	veen categor	and type of	E1 must be consistent with their X^2	4	
		ected and roa	ek runners mo ad less often th		E1 E1	
		end to be as es of running	expected ín al	l three	E1 E1	
			oad runners m nners less tha		E1 E1	6
					TOTAL	18